
Exciting Directions for ML Models
and the Implications for
Computing Hardware

Jeff Dean
Chief Scientist
ai.google/research/people/jeff

Amin Vahdat
VP ML, Systems & Cloud AI
ai.google/research/people/AminVahdat

Presenting the work of many people at Google

http://ai.google/research/people/jeff
https://research.google/people/107027/

Some observations

In recent years, ML has completely changed our expectations of
what is possible with computers

The kinds of computations we want to run and the hardware on
which we run them is changing dramatically

Increasing scale (compute, data, model size) delivers better results

A decade of amazing progress in
what computers can do

Input Output

Pixels:

Audio:

Pixels:

“Hello, how are you?”

“leopard”

“How cold is it outside?”

“Bonjour, comment allez-vous?”

“A cheetah lying on top of a car”

A decade of amazing progress in
what computers can do

Pixels:

Audio:

Pixels:

“Hello, how are you?”

“leopard”

“How cold is it outside?”

“Bonjour, comment allez-vous?”

“A cheetah lying on top of a car”

InputOutput

bard.google.com

bard.google.com

bard.google.com

bard.google.com

“TPUs are specialized
hardware processors
developed by Google to
accelerate machine learning.”

“They can help
improve the
performance and
efficiency of
machine learning
models…”

Med-PaLM 2

Towards Expert-Level Medical Question Answering with Large Language Models
Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy
Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee
Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam and Vivek Natarajan

https://sites.research.google/med-palm/ https://arxiv.org/abs/2305.09617 (Med-PaLM 2 paper)
https://www.nature.com/articles/s41586-023-06291-2 (Med-PaLM 1 paper)

https://sites.research.google/med-palm/
https://arxiv.org/abs/2305.09617
https://www.nature.com/articles/s41586-023-06291-2

Multimodal models

PaLI: Scaling
Language-Image Learning
in 100+ Languages
Link

A transparent sculpture of a duck
made out of glass. The sculpture is in

front of a painting of a landscape.

Sprouts in the shape of text
'Imagen' coming out of a

fairytale book.

Imagen:
a text-to-image diffusion
model
Link

https://ai.googleblog.com/2022/09/pali-scaling-language-image-learning-in.html
https://imagen.research.google/

Rest of the talk

Important trends in ML Models

Some implications for computer architects

Designing ML hardware and deploying it to keep up with fast-moving field

Rest of the talk

Important trends in ML Models

Some implications for computer architects

Designing ML hardware and deploying it to keep up with fast-moving field

What is it going to take to deliver major increases in compute capacity &
efficiency to continue to advance the field of ML?

Important trends
in ML models

Sparsity Adaptive
computation

Dynamically-changing
neural networks

Focus of vast majority of ML community

Whole model activated for each input
example or token

Dense
models

Sparse
computation

Sparse models have different pathways
that are adaptively called upon as needed

Sparse
computation - Why?

By activating tiny part of overall model
for each example:

Can be much more efficient (just call upon
right pieces of overall model)

Different parts of model are specialized
for different kinds of inputs

Touch just the right 1% or 10% of large
model: improved responsiveness

Coarse-grained vs.
Fine-grained sparsity

Coarse-grained sparsity
Large modules that are either activated or not

Fine-grained sparsity
Sparsity within a single vector or tensor (e.g. where 1 or 2 of every 4
values are 0). Modern hardware starting to support this

Fine-grained & coarse-grained sparsity
are complementary

Most sparsity work today uses same size and
structure for each expert

FFN1 FFN2 FFN3 FFNN

Most sparsity work today uses same size and
structure for each expert

FFN1 FFN2 FFN3 FFNN

Computational balance achieved by equal size computation per expert and equal flow
of # of examples to each expert

All-to-all shuffle performance across accelerators important

25% 25%25% 25%

Varying computational costs?

Varying computational costs?

8%90% 1% 1%

Varying expert structure?

Varying computational costs?

Data-center Network

Pod 1 Pod 2

Hosts

PaLM language model, JMLR: https://arxiv.org/abs/2204.02311 Pathways, MLSys 2022: arxiv.org/abs/2203.12533

Pathways: Scalable system for flexible ML models

● Flexible mapping of components (pieces of ML computation) onto collection of physical
computational devices

● Can dynamically add or remove resources to running system
● Manages communication across multiple kinds of network transports (ICI, DCN, …)
● Highly scalable: PaLM language model trained across multiple TPUv4 Pods using Pathways

DCN transfers
Inter-Chip Interconnect (ICI)TPU Chips

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2203.12533

Dynamic introduction of new model capacity

Dynamic introduction of new model capacity

Dynamic introduction of new model capacity

Dynamic introduction of new model capacity

Separate models for different tasks Single model that can generalize across
millions of tasks

Where are we headed?

Dense models Efficient sparse models

Where are we headed?

Where are we headed?

Single modality models Models that deal with many modalities

➔ Connectivity of accelerators (BW and latency) matters

➔ Scale matters for both training and inference

➔ Sparse models put pressure on memory capacity and efficient routing

➔ ML software must make it easy to express interesting models

➔ Power, sustainability and reliability really matter

Key takeaways for computer architects & system builders

Lots of attention and dramatic headlines

Lots of misinformation

Important topic: critical to use actual
data to focus on the right things

CO2e* emissions
of machine
learning training

*CO2e = Carbon Dioxide Equivalents

Example of misinformation in this space
Energy and Policy Considerations for Deep Learning in NLP by Strubell et al. published in
2019 (cited >2300 times) attempted to estimate CO2e* emissions of Evolved Transformer
neural architecture search (NAS) run by So et al.

1

2

3

Modeled P100 not TPU v2 (where computation was actually run), and US average DC not Google DC:
actual NAS was ~5X lower

Assumed use of full size model, not small proxy size model for search (despite description in So et al.):
actual NAS was ~19X less compute/emissions due to this error

Misunderstood that NAS is a one-time cost, not an every-problem cost

Arrived at flawed estimate of 284t of CO2e for the Evolved Transformer NAS

The Evolved Transformer, So et al., https://arxiv.org/abs/1901.11117
Energy and Policy Considerations for Deep Learning in NLP, Strubell et al., ACL 2019, https://arxiv.org/abs/1906.02243 *CO2e = Carbon Dioxide Equivalents

Unlike other data in their paper, this was estimated not measured

https://arxiv.org/abs/1901.11117
https://arxiv.org/abs/1906.02243

Environmental cost to improve ML task (2024)?*
“The answers are grim: Training such a model would cost US $100 billion and would produce
as much carbon emissions as New York City does in a month. And if we estimate the
computational burden of a 1 percent error rate, the results are considerably worse.”

 Thompson et al., Deep Learning's Diminishing Returns: The Cost of Improvement is Becoming Unsustainable,
Oct 2021, IEEE Spectrum

https://ieeexplore.ieee.org/document/9563954/

The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
Google datacenter in Georgia generated 3.2t of CO2e*, not 284t of CO2e* (~88X less)

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,
https://arxiv.org/abs/2104.10350

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https://www.techrxiv.org/ndownloader/files/34128165

*CO2e = Carbon Dioxide Equivalents

1

Fortunately, with correct data, things are not so dire!

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2

The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
Google datacenter in Georgia generated 3.2t of CO2e*, not 284t of CO2e* (~88X less)

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,
https://arxiv.org/abs/2104.10350

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https://www.techrxiv.org/ndownloader/files/34128165

The discovered Evolved Transformer model is a drop-in replacement for the plain Transformer and
uses 16-25% less energy to reach same accuracy. It is open sourced for all to use:
 github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

*CO2e = Carbon Dioxide Equivalents

1

2

Fortunately, with correct data, things are not so dire!

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

Fortunately, with correct data, things are not so dire!
The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
Google datacenter in Georgia generated 3.2t of CO2e*, not 284t of CO2e* (~88X less)

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,
https://arxiv.org/abs/2104.10350

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https://www.techrxiv.org/ndownloader/files/34128165

The discovered Evolved Transformer model is a drop-in replacement for the plain Transformer and
uses 16-25% less energy to reach same accuracy. It is open sourced for all to use:
 github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

*CO2e = Carbon Dioxide Equivalents

Training an NLP model of the scale examined by Strubell et al. using the discovered Evolved
Transformer on ML efficient hardware in a Google datacenter in Iowa takes 120 TPUv2 hours, costs
$40, and generates 0.0024t of CO2e*, not 284t of CO2e*
(2.4 kg, ~118,000X less)

1

2

3

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

System goodput, power, reliability
and CO2e* should be primary
benchmarking and design targets

Many contributions to this section, including: Houle Gan, Sebastian Lobo, Xiaoyu Ma, Ram Padmanabhan,
Dave Patterson, Mukarram Tariq, Parthasarathy Ranganathan

*CO2e = Carbon Dioxide Equivalents

ELMo
(93.6M)

BERT(340M)

GPT-2 (1.5B)
Megatron-
LM (8.3B)

GPT-3 (175B)

LaMBDA
(137B)

Gopher
(280B)

PaLM
(540B)

Megatron-Turing
NLG (530B)

T5 (11B)

~10x/yr
trajectory

of

 d
en

se
 p

ar
am

et
er

s

Year

The demand for ML compute is growing exponentially

Quality continues to improve with
number of dense parameters for
foundational models

Required computing power growing super
linearly with dense model size

Synchronous, parallel computation requires
collectives→high speed, low latency
network interconnect

Accelerated computing with

TPU Supercomputing
judicious specialization + application codesign

10-100x
system efficiency

(perf, power, cost)

Specialized hardware
for dense matrix

multiplication

DRAM→ High
Bandwidth Memory

stacked up
to 10x bandwidth

Specialized hardware
for scatter/gather

in sparse operations

Synchronous, high
bandwidth

interconnect,
parameter distribution

Specialized data
representation

(e.g., int4 to bf16)

Liquid cooling
for maximum

system efficiency

Optical Circuit
Switching for fault

tolerance and efficient
scheduling

TPU v1
Internal Inference accelerator

2015

2018

Cloud TPU v2
Domain-specific AI supercomputing

256 chips distributed shared memory

2020

Cloud TPU v3
Liquid cooled

1k chips distributed shared memory

2022

Cloud TPU v4
Optically reconfigurable 3D Torus

4k chips with distributed shared memory

8x

2023

Rapid innovation with Cloud TPU AI Supercomputers

➔ Optimize for systems goodput, power,
reliability, and CO2e*

➔ Next generation of horizontal scaling

➔ Algorithmic innovation and software/hardware
codesign

Accelerated computing with
specialized hardware has

gotten us a massive factor
but this is no longer

enough…

Implications (or how to deliver the next
100x):

*CO2e = Carbon Dioxide Equivalents

The problem with current metrics

Higher power ok as long as it meets reliability and heat dissipation requirements
and can be air cooled within a fixed space

Chip perf is often simplistic view of headline numbers (e.g., max FLOPS, SpecInt), does not account for
systems cost

ML perf reports absolute performance at a given system size
It does not yet account for systems cost, CO2e*, or efficiency (and power is optional)

Traditionally, hardware evaluated in terms of “Chip Perf”/$ within a fixed power budget

*CO2e = Carbon Dioxide Equivalents

 Reflecting infrastructure
cost-performance is today’s
primary metric to evaluate

new architectural designs
to be deployed in 3-5 years

“Perf/TCO”
Performance normalized to Total Cost of Ownership (TCO), or Perf/TCO, has been
the primary criteria for architectural evaluation

TCO = CapEx + OpEx (over N years)
CapEx (Capital Expenditure)= one-time investment to build compute HW and
physical infrastructure
OpEx (Operational Expenditure) = recurring cost paid during the life cycle of the
servers:

OpEx = DC Provisioning Cost + Electricity Cost

DC Provisioning Cost = #years ⨯ TDP ⨯ $/Provisioned Watt
Electricity Cost = #years ⨯ consumed power ⨯ $/Consumed Watt

Defining systems Perf/TCO

Perf/TCO hidden assumptions
1. There is enough DC capacity to house new compute and it is ok not to idle

some provisioned power capacity

2. Consumed power can be accurately attributed back to individual workloads

3. Performance accurately captures the characteristics of both present and
future workloads and accounts for reliability

We cannot assume power
capacity is infinite

We need metrics to match
community’s commitment to

the carbon-free future

Google has publicly committed to
operate 24/7 carbon-free energy by

2030

Perf/TCO is no longer sufficient
Change in assumptions driving need to evolve metrics

● Power bound
● Location bound
● Environmental considerations

1. Systems Perf/Average Watt
A metric that represents systems performance capacity with
fixed power capacity

2. Systems Perf/CO2e*
CO2e = DC construction CO2e +
 Compute Infra build/delivery CO2e +
 Compute Infra Operational CO2e

We must account for the cost of building, shipping, and
deploying our infrastructure.

We need metrics to match
Google’s commitment to the

carbon-free future

Google has publicly committed to
operate 24/7 carbon-free energy by

2030

*CO2e = Carbon Dioxide Equivalents

Sample server CO2e

[1] International Energy Agency, Global Energy and CO2 Status Report, 2019.

Server build CO2e: 1-4t/server according to public sources

CO2e offsets: $1000/ton according to public sources

1000W server with 50% average utilization of TDP:

500W → 4380kWh/year * 6 year lifetime = 26000kWh → 12.5 metric tons of CO2 per IEA
using average 2019 power emissions [1]
475 g*CO2e/kWh

*CO2e = Carbon Dioxide Equivalents

Meeting the demand
requires innovation
Rethinking our system and
infrastructure designs

Fleet infrastructure and optimizing
deployment strategies → system TDP

Optimizing software/hardware to manage
dynamic power consumption range for
average power

Optimizing software/hardware to manage dynamic power
consumption range for average power

Get more out of each Watt
Optimize the power parameters

 for each job

ML job

Peak watts

Tr
ai

ni
ng

 th
ro

ug
hp

ut

Best perf per
TCO

Provision the right amount of Watts
Load balance jobs to avoid worst-case,

concentrated power peaks

Power demand CDF

Peak watts per chip

%
 o

f t
ot

al
 jo

bs

C
ho

se
n

pr
ov

isi
on

in
g

W
or

st
-c

as
e

pr
ov

isi
on

in
g

Av
er

ag
e

Before optimization

TDC Vmin
margin

WL bound
by

Core
freq Vset Load

line

Job1 800A 80mV compute 1x 0.87V 0.1m

Job2 600A 10mV memory 1x 0.87V 0.1m

800A
600A

1000A
1200A

Chip spec EDC

chip Vmin

0.79V
0.81V

Vo
lta

ge
C

ur
re

nt

Job1
Job2

Before optimization

TDC Vmin
margin

WL bound
by

Core
freq Vset Load

line

Job1 800A 80mV compute 1x 0.87V 0.1m

Job2 600A 10mV memory 1x 0.87V 0.1m

800A
600A

1000A
1200A

Chip spec EDC

chip Vmin

0.79V
0.81V

Vo
lta

ge
C

ur
re

nt

Job1
Job2

0.756V

840A

511A

Vo
lta

ge
C

ur
re

nt

Lower Vset or
deeper loadline

di/dt mitigation
on job2

Workload-aware
optimization

job1 Vmin
job2 Vmin

0.745V

After optimization

TDC Vmin
margin

WL bound
by

Core
freq Vset Load line

840A 25mV balanced 1.1x 0.84V 0.1m

500A 25mV balanced 0.9x 0.87V 0.25m

1.1x Performance
0.8x Power

Given job placements,
optimize each job’s power

params

Machine &
power domain

Cell control
plane

Power traces by job
Power capacity by bus duct

Data
Decisions

The control plane combines both capabilities to maximize cell throughput per unit of power,
while respecting job SLOs and reacting to power domain failure events

Optimized power
parameters per job
(e.g. voltage, frequency,
power cap, etc)

Given the power profile of
jobs, (re)optimize their

placement

Optimizing software/hardware to manage dynamic power
consumption range for average power

Power aware scheduling
Use power demand & supply in job scheduling

Job power parameter fine tuning
Add live feedback loops between power domain

and cell control plane

High power job

Low power job

Adverse
scheduling

Fits power constraints

Rack

Bu
s 1

Bu
s 2

Violates power constraints

Load balanced
scheduling

Bu
s 1

Bu
s 2

Po
w

er
 c

on
st

ra
in

ed
 b

us
 d

uc
t

5
ra

ck
s

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Initial placement load balances
power demand across all bus ducts

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

Power failure event: Bus duct 4
has 40% less power available

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

40
%

 th
ro

tt
lin

g

Action 1: Throttle all jobs in bus
duct 4 by 40%

Power failure event: Bus duct 4
has 40% less power available

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

40
%

 th
ro

tt
lin

g

Action 1: Throttle all jobs in bus
duct 4 by 40%

Throttling affects throughput of
entire large job, severely
impacting cell-wide throughput

Power failure event: Bus duct 4
has 40% less power available

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

28
%

 th
ro

tt
lin

g

Action 2: Evict the small job in bus
4 & give more power budget to the
Large job

Effect: Throttling is reduced from
40% to 28%

Power failure event: Bus duct 4
has 40% less power available

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

4%
 th

ro
tt

lin
g

Action 3: Shift workers from the
large job to bus 3 (evicting a small
job along the way). Throttle Bus 3
to avoid violating power constraint

Effect: Throttling is reduced from
28% to 5%. This is the minimum
possible throttling for the cell.

Power failure event: Bus duct 4
has 40% less power available

5%
 th

ro
tt

lin
g

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

Action 4: Throttle the entire large
job by 5% to even out performance

Power failure event: Bus duct 4
has 40% less power available

5% throttling

End to end power/perf management

End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

Action 5: Use the incremental
power budget to boost the
remaining jobs

Power failure event: Bus duct 4
has 40% less power available

3% throttling
Effect: Maximized throughput for
the cell

1.3x boost

Given the scale of ML systems and
the size of ML training jobs any
reliability issues become massively
impactful, often times infecting the
entire system

Silent data corruption

Non-deterministically produce incorrect
results, silently

Challenging problem when running largely
independent computation

Multiplicatively worse at scale with
synchronous stochastic gradient descent

Can quickly spread results across thousands
of components across ML supercomputer

Metrics anomaly: anomaly due to SDC

Anomaly due to SDC

Time

G
ra

di
en

t N
or

m

Anomaly with NO SDC

Time

G
ra

di
en

t N
or

m

Metrics anomaly: expected anomaly (no SDC)

SDC detected with NO anomaly
The step replay shows different values,
but both values are in the normal range.

Time

G
ra

di
en

t N
or

m

SDC with no metrics anomaly

Defective machine
causes SDC

SDC checker
automatically
identifies SDC

SDC Checker
moves training to

hot spare and
sends defective

machine for repair

Normal training
state

Synchronous training worker SDC checker Hot spare

ML Controller transparently handles
Silent Data Corruption (SDC)

Iterate much faster when
delivering specialized hardware

6-12 months

We have to iterate much faster…

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months

Right now, industry best practices
from idea to production:

Current idealized timeline for chip delivery to production

~3 years

Chip to production

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months
Chip to production

What if designing a custom chip
took a few people a few weeks?

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months

Use machine learning to
automatically do architectural

exploration and synthesis

Chip to production

Using ML to extend the design space exploration
Simultaneously optimize

Hardware design space choices (~1013 search space)

How workloads are mapped onto this hypothetical hardware (by compilers or other software):
search space now much larger (~102300)

A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842

Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process
Red: compiler space exploration only with no HW changes vs. baseline
Green: customizing accelerator+compiler for a particular single model

A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842

A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process
Red: compiler space exploration only with no HW changes vs. baseline
Green: customizing accelerator+compiler for a particular single model
Yellow: customizing accelerator+compiler to mix of five model workload

Customize for these five

https://arxiv.org/abs/2105.12842

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

Chip to production
12 months

Speed up verification by learning to
automatically generate test coverage

with small set of tests

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

Chip to production
12 months

Learning Semantic Representations to Verify Hardware Designs, Shobha Vasudevan, Wenjie Jiang, David Bieber, Rishabh Singh, Hamid
Shojaei, C. Richard Ho, Charles Sutton. NeurIPS 2021, openreview.net/pdf?id=oIhzg4GJeOf

Promising results not discussed in
this talk. See paper below!

Speed up verification by learning to
automatically generate test coverage

with small set of tests

https://openreview.net/pdf?id=oIhzg4GJeOf
https://openreview.net/pdf?id=oIhzg4GJeOf

Learn to quickly generate high quality
placement and routing solutions

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months
Chip to production

 Number of states
~10123

 Number of states
~10360

 Number of states
~109000

Chess Go Chip Placement

Can we get an RL Agent to successfully play the
“Game of ASIC Chip Layout”?

Human Expert ML Placer

White blurred area are macros (memory); green blurred area are standard cell clusters (logic)
ML placer finds smoother, rounder macro placements to reduce the wirelength

Time taken: ~6-8 person weeks
Total wirelength: 57.07m

Time taken: 24 hours
Total wirelength: 55.42m

Results on a TPU design block

-2.9% shorter

RL tool used for placement and routing of
37 blocks of recent TPU chip design

Compared to placements by human experts:

Results on recent full chip TPU design

26 of 37 blocks better quality of result

7 of 37 blocks equal quality of result

4 of 37 blocks worse quality of result

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months

Note that even if we just get much more rapid turnaround with less human effort
required for the whole design and implementation phase of a chip, we can then run it
on system emulators, get much higher quality feedback, etc., even if we don’t send
every automated design+implementation to a fab

Chip to production

6-12 months

Opportunity: Apply ML to chip design

Design and
exploration

12 months
Implement the
new design

6 months
Tape out
with mfg
partner

12 months

Software running on emulation at tapeout
Assuming silicon is correct, converge quickly to target DPPM

Running workloads across thousands of chips in one month
Vendor IP with debugging and visibility support, SDC isolated with OOB test

Chip to production

Conclusions

➔ ML capabilities (image creation, audio, coding
assistance, etc) improving rapidly and will bring
fundamental changes to the way we do things

➔ ML is an increasingly large portion of global
computation

➔ ML models increasingly dynamic and evolving
structures, not static, dense models

➔ Focus on systems goodput not chip headline
performance

➔ Power, CO2e efficiency, SDC important to accurately
measure and improve

➔ Shorter timelines for designing and deploying new
hardware essential to rapidly adapt to changing ML
landscape (ML automation of design process can help!)

Thank you!

