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Some observations

In recent years, ML has completely changed our expectations of 
what is possible with computers

The kinds of computations we want to run and the hardware on 
which we run them is changing dramatically

Increasing scale (compute, data, model size) delivers better results



A decade of amazing progress in 
what computers can do
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“A cheetah lying on top of a car”
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“TPUs are specialized 
hardware processors 
developed by Google to 
accelerate machine learning.”

“They can help 
improve the 
performance and 
efficiency of 
machine learning 
models…”



Med-PaLM 2

Towards Expert-Level Medical Question Answering with Large Language Models
Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy 
Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee 
Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam and Vivek Natarajan

https://sites.research.google/med-palm/   https://arxiv.org/abs/2305.09617 (Med-PaLM 2 paper)
https://www.nature.com/articles/s41586-023-06291-2 (Med-PaLM 1 paper)

https://sites.research.google/med-palm/
https://arxiv.org/abs/2305.09617
https://www.nature.com/articles/s41586-023-06291-2


Multimodal models

PaLI: Scaling
Language-Image Learning 
in 100+ Languages 
Link

A transparent sculpture of a duck 
made out of glass. The sculpture is in 

front of a painting of a landscape.

Sprouts in the shape of text 
'Imagen' coming out of a 

fairytale book.

Imagen:
a text-to-image diffusion 
model
Link

https://ai.googleblog.com/2022/09/pali-scaling-language-image-learning-in.html
https://imagen.research.google/
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Rest of the talk

Important trends in ML Models

Some implications for computer architects

Designing ML hardware and deploying it to keep up with fast-moving field

What is it going to take to deliver major increases in compute capacity & 
efficiency to continue to advance the field of ML?



Important trends 
in ML models

Sparsity Adaptive 
computation

Dynamically-changing 
neural networks



Focus of vast majority of ML community

Whole model activated for each input 
example or token

Dense
models



Sparse
computation

Sparse models have different pathways 
that are adaptively called upon as needed



Sparse
computation - Why?

By activating tiny part of overall model 
for each example:

Can be much more efficient (just call upon 
right pieces of overall model)

Different parts of model are specialized 
for different kinds of inputs

Touch just the right 1% or 10% of large 
model: improved responsiveness



Coarse-grained vs. 
Fine-grained sparsity

Coarse-grained sparsity
Large modules that are either activated or not

Fine-grained sparsity
Sparsity within a single vector or tensor (e.g. where 1 or 2 of every 4 
values are 0).  Modern hardware starting to support this

Fine-grained & coarse-grained sparsity 
are complementary



Most sparsity work today uses same size and 
structure for each expert

FFN1 FFN2 FFN3 FFNN



Most sparsity work today uses same size and 
structure for each expert

FFN1 FFN2 FFN3 FFNN

Computational balance achieved by equal size computation per expert and equal flow 
of # of examples to each expert

All-to-all shuffle performance across accelerators important

25% 25%25% 25%



Varying computational costs?
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8%90% 1% 1%



Varying expert structure?



Varying computational costs?



Data-center Network

Pod 1 Pod 2

Hosts

PaLM language model, JMLR: https://arxiv.org/abs/2204.02311 Pathways, MLSys 2022: arxiv.org/abs/2203.12533 

Pathways: Scalable system for flexible ML models

● Flexible mapping of components (pieces of ML computation) onto collection of physical 
computational devices

● Can dynamically add or remove resources to running system
● Manages communication across multiple kinds of network transports (ICI, DCN, …)
● Highly scalable: PaLM language model trained across multiple TPUv4 Pods using Pathways

DCN transfers
Inter-Chip Interconnect (ICI)TPU Chips

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2203.12533
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Dynamic introduction of new model capacity



Separate models for different tasks Single model that can generalize across 
millions of tasks

Where are we headed?



Dense models Efficient sparse models 

Where are we headed?



Where are we headed?

Single modality models Models that deal with many modalities



➔ Connectivity of accelerators (BW and latency) matters

➔ Scale matters for both training and inference

➔ Sparse models put pressure on memory capacity and efficient routing

➔ ML software must make it easy to express interesting models 

➔ Power, sustainability and reliability really matter

Key takeaways for computer architects & system builders



Lots of attention and dramatic headlines

Lots of misinformation

Important topic: critical to use actual 
data to focus on the right things

CO2e* emissions 
of machine 
learning training

*CO2e = Carbon Dioxide Equivalents



Example of misinformation in this space
Energy and Policy Considerations for Deep Learning in NLP by Strubell et al. published in 
2019 (cited >2300 times) attempted to estimate CO2e* emissions of Evolved Transformer 
neural architecture search (NAS) run by So et al.

1

2

3

Modeled P100 not TPU v2 (where computation was actually run), and US average DC not Google DC: 
actual NAS was ~5X lower

Assumed use of full size model, not small proxy size model for search (despite description in So et al.): 
actual NAS was ~19X less compute/emissions due to this error

Misunderstood that NAS is a one-time cost, not an every-problem cost

Arrived at flawed estimate of 284t of CO2e for the Evolved Transformer NAS

The Evolved Transformer, So et al., https://arxiv.org/abs/1901.11117 
Energy and Policy Considerations for Deep Learning in NLP, Strubell et al., ACL 2019, https://arxiv.org/abs/1906.02243 *CO2e = Carbon Dioxide Equivalents

Unlike other data in their paper, this was estimated not measured

https://arxiv.org/abs/1901.11117
https://arxiv.org/abs/1906.02243


Environmental cost to improve ML task (2024)?* 
“The answers are grim: Training such a model would cost US $100 billion and would produce 
as much carbon emissions as New York City does in a month. And if we estimate the 
computational burden of a 1 percent error rate, the results are considerably worse.”

 Thompson et al., Deep Learning's Diminishing Returns: The Cost of Improvement is Becoming Unsustainable, 
Oct 2021, IEEE Spectrum

https://ieeexplore.ieee.org/document/9563954/


The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a 
Google datacenter in Georgia generated 3.2t of CO2e*, not 284t of CO2e* (~88X less)

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean, 
https://arxiv.org/abs/2104.10350 

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, 
David So, Maud Texier, and Jeff Dean, IEEE Computer, https://www.techrxiv.org/ndownloader/files/34128165

*CO2e = Carbon Dioxide Equivalents

1

Fortunately, with correct data, things are not so dire!

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
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       github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

*CO2e = Carbon Dioxide Equivalents

1

2

Fortunately, with correct data, things are not so dire!

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py


Fortunately, with correct data, things are not so dire!
The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a 
Google datacenter in Georgia generated 3.2t of CO2e*, not 284t of CO2e* (~88X less)

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean, 
https://arxiv.org/abs/2104.10350 

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, 
David So, Maud Texier, and Jeff Dean, IEEE Computer, https://www.techrxiv.org/ndownloader/files/34128165

The discovered Evolved Transformer model is a drop-in replacement for the plain Transformer and  
uses 16-25% less energy to reach same accuracy.  It is open sourced for all to use:
       github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

*CO2e = Carbon Dioxide Equivalents

Training an NLP model of the scale examined by Strubell et al. using the discovered Evolved 
Transformer on ML efficient hardware in a Google datacenter in Iowa takes 120 TPUv2 hours, costs 
$40, and generates 0.0024t of CO2e*, not 284t of CO2e*
(2.4 kg, ~118,000X less)

1

2

3

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py


System goodput, power, reliability 
and CO2e* should be primary 
benchmarking and design targets

Many contributions to this section, including: Houle Gan, Sebastian Lobo, Xiaoyu Ma, Ram Padmanabhan, 
Dave Patterson, Mukarram Tariq, Parthasarathy Ranganathan

*CO2e = Carbon Dioxide Equivalents



ELMo 
(93.6M)

BERT(340M)

GPT-2 (1.5B)
Megatron-
LM (8.3B)

GPT-3 (175B)

LaMBDA 
(137B)

Gopher 
(280B)

PaLM 
(540B)

Megatron-Turing 
NLG (530B)

T5 (11B)

~10x/yr 
trajectory
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The demand for ML compute is growing exponentially

Quality continues to improve with 
number of dense parameters for 
foundational models

Required computing power growing super 
linearly with dense model size

Synchronous, parallel computation requires 
collectives→high speed, low latency 
network interconnect 



Accelerated computing with 

TPU Supercomputing
judicious specialization + application codesign

10-100x 
system efficiency 

(perf, power, cost)

Specialized hardware 
for dense matrix 

multiplication

DRAM→ High 
Bandwidth Memory 

stacked up 
to 10x bandwidth

Specialized hardware 
for scatter/gather 

in sparse operations

Synchronous, high 
bandwidth 

interconnect, 
parameter distribution

Specialized data 
representation 

(e.g., int4 to bf16)

Liquid cooling 
for maximum 

system efficiency

Optical Circuit 
Switching for fault 

tolerance and efficient 
scheduling



TPU v1
Internal Inference accelerator

2015

2018

Cloud TPU v2
Domain-specific AI supercomputing 

256 chips distributed shared memory

2020

Cloud TPU v3
Liquid cooled

1k chips distributed shared memory

2022

Cloud TPU v4
Optically reconfigurable 3D Torus

4k chips with distributed shared memory

8x

2023

Rapid innovation with Cloud TPU AI Supercomputers



➔ Optimize for systems goodput, power, 
reliability, and CO2e* 

➔ Next generation of horizontal scaling

➔ Algorithmic innovation and software/hardware 
codesign

Accelerated computing with 
specialized hardware has 

gotten us a massive factor 
but this is no longer 

enough… 

Implications (or how to deliver the next 
100x):

*CO2e = Carbon Dioxide Equivalents



The problem with current metrics

Higher power ok as long as it meets reliability and heat dissipation requirements 
and can be air cooled within a fixed space 

Chip perf is often simplistic view of headline numbers (e.g., max FLOPS, SpecInt), does not account for 
systems cost

ML perf reports absolute performance at a given system size
It does not yet account for systems cost, CO2e*, or efficiency (and power is optional)

Traditionally, hardware evaluated in terms of “Chip Perf”/$ within a fixed power budget

*CO2e = Carbon Dioxide Equivalents



 Reflecting infrastructure 
cost-performance is today’s 
primary metric to evaluate 

new architectural designs 
to be deployed in 3-5 years

“Perf/TCO”
Performance normalized to Total Cost of Ownership (TCO), or Perf/TCO, has been 
the primary criteria for architectural evaluation 

TCO = CapEx + OpEx (over N years)
CapEx (Capital Expenditure)= one-time investment to build compute HW and 
physical infrastructure
OpEx (Operational Expenditure) = recurring cost paid during the life cycle of the 
servers: 

OpEx = DC Provisioning Cost +  Electricity Cost

DC Provisioning Cost = #years ⨯ TDP ⨯ $/Provisioned Watt
Electricity Cost = #years ⨯ consumed power ⨯ $/Consumed Watt

Defining systems Perf/TCO



Perf/TCO hidden assumptions
1. There is enough DC capacity to house new compute and it is ok not to idle 

some provisioned power capacity

2. Consumed power can be accurately attributed back to individual workloads

3. Performance accurately captures the characteristics of both present and 
future workloads and accounts for reliability



We cannot assume power 
capacity is infinite

We need metrics to match 
community’s commitment to 

the carbon-free future

Google has publicly committed to 
operate 24/7 carbon-free energy by 

2030

Perf/TCO is no longer sufficient
Change in assumptions driving need to evolve metrics

● Power bound
● Location bound
● Environmental considerations



1. Systems Perf/Average Watt
A metric that represents systems performance capacity with 
fixed power capacity

2. Systems Perf/CO2e*
CO2e = DC construction CO2e +
             Compute Infra build/delivery CO2e +
             Compute Infra Operational CO2e

We must account for the cost of building, shipping, and 
deploying our infrastructure.

We need metrics to match 
Google’s commitment to the 

carbon-free future

Google has publicly committed to 
operate 24/7 carbon-free energy by 

2030

*CO2e = Carbon Dioxide Equivalents



Sample server CO2e

[1] International Energy Agency, Global Energy and CO2 Status Report, 2019.

Server build CO2e: 1-4t/server according to public sources

CO2e offsets: $1000/ton according to public sources

1000W server with 50% average utilization of TDP:

500W → 4380kWh/year * 6 year lifetime = 26000kWh → 12.5 metric tons of CO2 per IEA 
using average 2019 power emissions [1]
475 g*CO2e/kWh

*CO2e = Carbon Dioxide Equivalents



Meeting the demand 
requires innovation
Rethinking our system and 
infrastructure designs

Fleet infrastructure and optimizing 
deployment strategies → system TDP

Optimizing software/hardware to manage 
dynamic power consumption range for 
average power



Optimizing software/hardware to manage dynamic power 
consumption range for average power

Get more out of each Watt
Optimize the power parameters

 for each job

ML job

Peak watts
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Best perf per 
TCO

Provision the right amount of Watts
Load balance jobs to avoid worst-case, 

concentrated power peaks

Power demand CDF

Peak watts per chip
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Before optimization
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TDC Vmin 
margin

WL bound 
by

Core 
freq Vset Load

line

Job1 800A 80mV compute 1x 0.87V 0.1m

Job2 600A 10mV memory 1x 0.87V 0.1m

800A
600A

1000A
1200A

Chip spec EDC

chip Vmin

0.79V
0.81V
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Job1
Job2

0.756V

840A

511A

Vo
lta

ge
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nt

Lower Vset or 
deeper loadline

di/dt mitigation 
on job2

Workload-aware 
optimization

job1 Vmin
job2 Vmin

0.745V

After optimization

TDC Vmin
margin

WL bound 
by

Core 
freq Vset Load line

840A 25mV balanced 1.1x 0.84V 0.1m

500A 25mV balanced 0.9x 0.87V 0.25m

1.1x Performance
0.8x Power 



Given job placements, 
optimize each job’s power 

params

Machine & 
power domain

Cell control 
plane

Power traces by job
Power capacity by bus duct

Data
Decisions

The control plane combines both capabilities to maximize cell throughput per unit of power, 
while respecting job SLOs and reacting to power domain failure events

Optimized power
parameters per job
(e.g. voltage, frequency, 
power cap, etc)

Given the power profile of 
jobs, (re)optimize their 

placement

Optimizing software/hardware to manage dynamic power 
consumption range for average power

Power aware scheduling
Use power demand & supply in job scheduling

Job power parameter fine tuning
Add live feedback loops between power domain 

and cell control plane 

High power job

Low power job

Adverse 
scheduling

Fits power constraints

Rack

Bu
s 1

Bu
s 2

Violates power constraints

Load balanced 
scheduling

Bu
s 1

Bu
s 2
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Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

End to end power/perf management
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● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Initial placement load balances 
power demand across all bus ducts
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Action 1: Throttle all jobs in bus 
duct 4 by 40%

Throttling affects throughput of 
entire large job, severely 
impacting cell-wide throughput

Power failure event: Bus duct 4 
has 40% less power available

End to end power/perf management



Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1
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s 2

Bu
s 3

Bu
s 4
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Action 2: Evict the small job in bus 
4 & give more power budget to the 
Large job

Effect: Throttling is reduced from 
40% to 28%

Power failure event: Bus duct 4 
has 40% less power available

End to end power/perf management



Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4
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Action 3:  Shift workers from the 
large job to bus 3 (evicting a small 
job along the way). Throttle Bus 3 
to avoid violating power constraint

Effect: Throttling is reduced from 
28% to 5%. This is the minimum 
possible throttling for the cell.

Power failure event: Bus duct 4 
has 40% less power available

5%
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ro
tt

lin
g

End to end power/perf management



Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

Action 4: Throttle the entire large 
job by 5% to even out performance

Power failure event: Bus duct 4 
has 40% less power available

5% throttling

End to end power/perf management



End to end power/perf management

Mini datacenter:
● 4 bus ducts
● 20 racks (5 racks per bus duct)

Schedule:
● 4x 1-rack training jobs
● 1x 16-rack training job

Rack

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Bu
s 1

Bu
s 2

Bu
s 3

Bu
s 4

Action 5: Use the incremental 
power budget to boost the 
remaining jobs

Power failure event: Bus duct 4 
has 40% less power available

3% throttling
Effect: Maximized throughput for 
the cell

1.3x boost



Given the scale of ML systems and 
the size of ML training jobs any 
reliability issues become massively 
impactful, often times infecting the 
entire system 



Silent data corruption

Non-deterministically produce incorrect 
results, silently

Challenging problem when running largely 
independent computation

Multiplicatively worse at scale with 
synchronous stochastic gradient descent

Can quickly spread results across thousands 
of components across ML supercomputer



Metrics anomaly: anomaly due to SDC

Anomaly due to SDC
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Anomaly with NO SDC
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Metrics anomaly: expected anomaly (no SDC)



SDC detected with NO anomaly
The step replay shows different values, 
but both values are in the normal range.
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SDC with no metrics anomaly



Defective machine 
causes SDC

SDC checker 
automatically 
identifies SDC

SDC Checker 
moves training to 

hot spare and 
sends defective 

machine for repair

Normal training 
state

Synchronous training worker SDC checker Hot spare

ML Controller transparently handles 
Silent Data Corruption (SDC)



Iterate much faster when 
delivering specialized hardware



6-12 months

We have to iterate much faster…

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
partner

12 months

Right now, industry best practices 
from idea to production:

Current idealized timeline for chip delivery to production

~3 years

Chip to production



6-12 months

Opportunity: Apply ML to chip design

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
partner

12 months
Chip to production



What if designing a custom chip 
took a few people a few weeks?



6-12 months

Opportunity: Apply ML to chip design

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
partner

12 months

Use machine learning to 
automatically do architectural 

exploration and synthesis

Chip to production



Using ML to extend the design space exploration
Simultaneously optimize

Hardware design space choices (~1013 search space)

How workloads are mapped onto this hypothetical hardware (by compilers or other software): 
search space now much larger (~102300)

A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842


Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process
Red: compiler space exploration only with no HW changes vs. baseline
Green: customizing accelerator+compiler for a particular single model

A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842


A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators,
Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process
Red: compiler space exploration only with no HW changes vs. baseline
Green: customizing accelerator+compiler for a particular single model
Yellow: customizing accelerator+compiler to mix of five model workload

Customize for these five

https://arxiv.org/abs/2105.12842
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Speed up verification by learning to 
automatically generate test coverage 

with small set of tests



6-12 months
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12 months

Learning Semantic Representations to Verify Hardware Designs, Shobha Vasudevan, Wenjie Jiang, David Bieber, Rishabh Singh, Hamid 
Shojaei, C. Richard Ho, Charles Sutton. NeurIPS 2021, openreview.net/pdf?id=oIhzg4GJeOf

Promising results not discussed in 
this talk.  See paper below!

Speed up verification by learning to 
automatically generate test coverage 

with small set of tests

https://openreview.net/pdf?id=oIhzg4GJeOf
https://openreview.net/pdf?id=oIhzg4GJeOf


Learn to quickly generate high quality 
placement and routing solutions

6-12 months

Opportunity: Apply ML to chip design

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
partner

12 months
Chip to production



 Number of states 
~10123

 Number of states 
~10360

 Number of states 
~109000

Chess Go Chip Placement

Can we get an RL Agent to successfully play the 
“Game of ASIC Chip Layout”?



Human Expert ML Placer

White blurred area are macros (memory); green blurred area are standard cell clusters (logic) 
ML placer finds smoother, rounder macro placements to reduce the wirelength

Time taken: ~6-8 person weeks
Total wirelength: 57.07m

Time taken: 24 hours
Total wirelength: 55.42m 

Results on a TPU design block

-2.9% shorter



RL tool used for placement and routing of 
37 blocks of recent TPU chip design

Compared to placements by human experts:

Results on recent full chip TPU design

26 of 37 blocks better quality of result 

7 of 37 blocks equal quality of result

4 of 37 blocks worse quality of result



6-12 months

Opportunity: Apply ML to chip design

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
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12 months

Note that even if we just get much more rapid turnaround with less human effort 
required for the whole design and implementation phase of a chip, we can then run it 
on system emulators, get much higher quality feedback, etc., even if we don’t send 
every automated design+implementation to a fab 

Chip to production



6-12 months

Opportunity: Apply ML to chip design

Design and 
exploration

12 months
Implement the 
new design

6 months
Tape out 
with mfg 
partner

12 months

Software running on emulation at tapeout
Assuming silicon is correct, converge quickly to target DPPM

Running workloads across thousands of chips in one month
Vendor IP with debugging and visibility support, SDC isolated with OOB test

Chip to production



Conclusions

➔ ML capabilities (image creation, audio, coding 
assistance, etc) improving rapidly and will bring 
fundamental changes to the way we do things

➔ ML is an increasingly large portion of global 
computation

➔ ML models increasingly dynamic and evolving 
structures, not static, dense models

➔ Focus on systems goodput not chip headline 
performance

➔ Power, CO2e efficiency, SDC important to accurately 
measure and improve

➔ Shorter timelines for designing and deploying new 
hardware essential to rapidly adapt to changing ML 
landscape (ML automation of design process can help!)



Thank you!




