Exciting Directions for ML Models
and the Implications for
Computing Hardware

Jeff Dean Amin Vahdat
Chief Scientist VP ML, Systems & Cloud Al
ai.google/research/people/jeff ai.google/research/people/AminVahdat

Presenting the work of many people at Google

Google

B

http://ai.google/research/people/jeff
https://research.google/people/107027/

Some observations

0 In recent years, ML has completely changed our expectations of
. what is possible with computers

'®: Increasing scale (compute, data, model size) delivers better results

. The kinds of computations we want to run and the hardware on
© which we run them is changing dramatically

A decade of amazing progress in
what computers can do

Pixels: “leopard”
Audio: “How cold is it outside?”

“Hello, how are you?” “Bonjour, comment allez-vous?”
Pixels: “A cheetah lying on top of a car”

Google

A decade of amazing progress in
what computers can do

Pixels: “leopard”
Audio: “How cold is it outside?”

“Hello, how are you?” “Bonjour, comment allez-vous?”
Pixels: “A cheetah lying on top of a car”

Google

[bard.google.com]

6 Reverse the letters of 'HotChips' and ‘Tensor Processing Unit' for me V4

Google

[bard.google.com]

e Reverse the letters of 'HotChips' and ‘Tensor Processing Unit' for me V4

View other drafts v o)

*’0 Sure. The reversed strings of "HotChips" and "Tensor Processing Unit" are "spihCtoH" and "tinU gnissecorP rosneT", respectively.

I can also do this for you in Python. Here is the code:

Python

1 def reverse_string(string):
reversed_string = ""
for i in range(len(string) - 1, -1, -1):
reversed_string += string[i]
return reversed_string

print(reverse_string("HotChips"))
print(reverse_string("Tensor Processing Unit"))

Use code with caution. Learn more 0

This code first defines a function called reverse_string() . This function takes a string as input and returns a reversed string. The
function works by looping through the string from the end to the beginning, and adding each letter to the reversed string.

The code then prints the reversed strings of "HotChips" and "Tensor Processing Unit".

Is there anything else | can help you with?

Google

[bard.google.com] o Tell me more about TPUs 7

Google

ba rdgoogle.com e Tell me more about TPUs V4

View other drafts v/ L D)

4‘ Sure. Tensor Processing Units (TPUs) are specialized hardware processors developed by Google to accelerate machine learning. TPUs are
specifically designed to handle tensor operations, which account for most of the computations in deep learning models.

TPUs are much faster than general-purpose processors (CPUs) or graphics processing units (GPUs) for machine learning tasks. This is
because TPUs are designed to be very efficient at performing matrix multiplication, which is a key operation in deep learning.

TPUs are used in a variety of Google products, including Google Search, Google Translate, and Google Photos. They are also used by third-
party companies to develop their own machine learning applications.

Here are some of the key features of TPUs: “TP U S are Specia I ized
« They are designed specifically for machine learning tasks. h a rdwa re p rocessors
* They are much faster than CPUs or GPUs for machine learning tasks. d eve I (o) ped by Goog Ie to
~ Theyiasseny eceray eficient accelerate machine learning.”

« They are available for purchase by third-party companies.

TPUs are a valuable tool for accelerating machine learning applications. They can help to improve the performance and efficiency of
machine learning models, which can lead to faster development and deployment of machine learning applications.

u
T hey can h el p Here are some of the benefits of using TPUs for machine learning:

improve the P e _—— _—— :
« Faster training and inference: TPUs can significantly speed up the training and inference of machine learning models. This can be a
pe rfo rmance an d major advantage for applications that require real-time or near-real-time inference, such as self-driving cars or fraud detection.

efﬁ cien cy of . Lower' cos.ts: TPUs are more energy efﬁcu_ent than .CPUs or.GP.Us, which can lead to lower costs for training and inference. This is

h . I . especially important for large-scale machine learning applications, such as those used by Google Search or Facebook.
machine learnin g « Better performance: TPUs can achieve better performance than CPUs or GPUs for certain machine learning tasks, such as natural
m od e I S... " language processing and image recognition. This is because TPUs are specifically designed for these types of tasks.

If you are developing a machine learning application that requires high performance and efficiency, then TPUs are a good option to
consider. They can help you to improve the performance, efficiency, and cost of your application.

Google

| hope this helps! Let me know if you have any other questions.

Med-PalLM 2

Med-PaLM 2
86.5%

Approximate medical pass mark

60%
PubMed GPT
50.3%

DRAGON

BioLinkBERT ~ 47.5%
45.1% Galactica
44.4%

PubMedBERT
38.1%

GPT-Neo
33.3%

Dec20 Jul'21 Mar‘22 Oct‘22 Nov‘22 Dec‘22

Towards Expert-Level Medical Question Answering with Large Language Models

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy
Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomaseyv, Yun Liu, Renee
Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam and Vivek Natarajan

(Med-PaLM 2 paper)
(Med-PaLM 1 paper)

https://sites.research.google/med-palm/
https://arxiv.org/abs/2305.09617
https://www.nature.com/articles/s41586-023-06291-2

Multimodal models

“Generate the FaLl

alt_text in EN” 1

PaLl: Scaling

L - L . Transformer Transformer ___ “A baseball player with the
h anguage-image Learning ViT Encoder Decoder number 29 on his back”
in 100+ Languages
Link
Imagen:
a text-to-image diffusion
model
Link

Sprouts in the shape of text A transparent sculpture of a duck

‘Imagen’ coming out of a made out of glass. The sculpture is in

fairytale book. front of a painting of a landscape. Google

https://ai.googleblog.com/2022/09/pali-scaling-language-image-learning-in.html
https://imagen.research.google/

Rest of the talk

0 Important trends in ML Models
0 Some implications for computer architects

0 Designing ML hardware and deploying it to keep up with fast-moving field

Rest of the talk

0 Important trends in ML Models

. Some implications for computer architects

0 Designing ML hardware and deploying it to keep up with fast-moving field
What is it going to take to deliver major increases in compute capacity &

efficiency to continue to advance the field of ML?

Google

Important trends
in ML models

Sparsity Adaptive Dynamically-changing
computation neural networks
T @)

Google

Dense
models

Focus of vast majority of ML community

Whole model activated for each input
example or token

) i
Dense models: the le model activates.

Google

Sparse
computation

Sparse models have different pathways
that are adaptively called upon as needed

Sparse
computation - Why?

By activating tiny part of overall model
for each example:

Can be much more efficient (just call upon

. right pieces of overall model)

. Different parts of model are specialized
...~ for different kinds of inputs

. Touch just the right 1% or 10% of large

model: improved responsiveness

Google

Coarse-grained vs.
Fine-grained sparsity

Coarse-grained sparsity
Large modules that are either activated or not

Fine-grained sparsity
Sparsity within a single vector or tensor (e.g. where 1or 2 of every 4
values are 0). Modern hardware starting to support this

Fine-grained & coarse-grained sparsity
are complementary

Google

Most sparsity work today uses same size and
structure for each expert

Google

Most sparsity work today uses same size and
structure for each expert

Computational balance achieved by equal size computation per expert and equal flow
of # of examples to each expert

All-to-all shuffle performance across accelerators important oo
oogle

Varying computational costs?

Google

Varying computational costs?

Google

Varying expert structure?

Google

Varying computational costs?

Google

Pathways: Scalable system for flexible ML models

e Flexible mapping of components (pieces of ML computation) onto collection of physi.c‘:.al
computational devices

e Can dynamically add or remove resources to running system

e Manages communication across multiple kinds of network transports (ICI, DCN, ...)

e Highly scalable: PaLM language model trained across multiple TPUv4 Pods using Pathways

Hosts

TPU Chips <] in v s 1 | Inter-Chip Interconnect (ICI)

Pod 1 Pod 2

Pathways, MLSys 2022: arxiv.org/abs/2203.12533 PalLM language model, JMLR: https://arxiv.org/abs/2204.02311 Google

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2203.12533

Dynamic introduction of new model capacity

~2L P

.
% am
.

Google

Dynamic introduction of new model capacity

Google

Dynamic introduction of new model capacity

Google

Dynamic introduction of new model capacity

0
S

Google

Where are we headed?

%}m
I 1

Separate models for thousands of tasks Pathways: A single model that can generalize across millions of tasks.

Separate models for different tasks Single model that can generalize across
millions of tasks

Google

Where are we headed?

Sparse models: the pieces activate as needed.

Dense models Efficient sparse models

Google

Where are we headed?

Single modality models Models that deal with many modalities

Google

Key takeaways for computer architects & system builders

- Connectivity of accelerators (BW and latency) matters

-> Scale matters for both training and inference

-> Sparse models put pressure on memory capacity and efficient routing
- ML software must make it easy to express interesting models

- Power, sustainability and reliability really matter

COze* emissions
of machine
learning training

Lots of attention and dramatic headlines

: Lots of misinformation

Important topic: critical to use actual
" data to focus on the right things

*CO,e = Carbon Dioxide Equivalents

Example of misinformation in this space

Energy and Policy Considerations for Deep Learning in NLP by Strubell et al. published in
2019 (cited >2300 times) attempted to estimate CO,e* emissions of Evolved Transformer

neural architecture search (NAS) run by So et al.
Unlike other data in their paper, this was estimated not measured

a Modeled P100 not TPU v2 (where computation was actually run), and US average DC not Google DC:
actual NAS was ~5X lower

9 Assumed use of full size model, not small proxy size model for search (despite description in So et al.):
actual NAS was ~19X less compute/emissions due to this error

e Misunderstood that NAS is a one-time cost, not an every-problem cost

0 Arrived at flawed estimate of 284t of CO,e for the Evolved Transformer NAS

The Evolved Transformer, So et al., https:/arxiv.org/abs/1901.11117 * .. .
Energy and Policy Considerations for Deep Learning in NLP, Strubell et al., ACL 2019, https:/arxiv.org/abs/1906.02243 CO,e = Carbon Dioxide Equivalents

https://arxiv.org/abs/1901.11117
https://arxiv.org/abs/1906.02243

MIT Training a single Al model can emitas much

=l 1hTelleTe\"A carbon as five cars in their lifetimes
Review

Deep learning has a terrible carbon footprint.

Creating an Al can be five times

NewScientist worse for the planet than a car

Environmental cost to improve ML task (2024)?*
“The answers are grim: Training such a model would cost US $100 billion and would produce

as much carbon emissions as New York City does in a month. And if we estimate the
computational burden of a 1 percent error rate, the results are considerably worse.”

Thompson et al., Deep Learning's Diminishing Returns: The Cost of Improvement is Becoming Unsustainable,
Oct 2021, IEEE Spectrum

Google

https://ieeexplore.ieee.org/document/9563954/

Fortunately, with correct data, things are not so dire!

The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
o Google datacenter in Georgia generated 3.2t of CO,e*, not 284t of CO_e* (~88X less)

\i \ Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,
https://arxiv.org/abs/2104.10350

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https:/www.techrxiv.ora/ndownloader/files/34128165

*CO,e = Carbon Dioxide Equivalents Google

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2

Fortunately, with correct data, things are not so dire!

The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
o Google datacenter in Georgia generated 3.2t of CO,e*, not 284t of CO_e* (~88X less)

: The discovered Evolved Transformer model is a drop-in replacement for the plain Transformer and
9 uses 16-25% less energy to reach same accuracy. It is open sourced for all to use:

= github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,
https://arxiv.org/abs/2104.10350

2

‘ The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https:/www.techrxiv.ora/ndownloader/files/34128165

*CO,e = Carbon Dioxide Equivalents Google

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

Fortunately, with correct data, things are not so dire!

The actual one-time Evolved Transformer NAS search done by So et al. on TPU v2 hardware in a
o Google datacenter in Georgia generated 3.2t of CO,e*, not 284t of CO,e* (~88X less)

: The discovered Evolved Transformer model is a drop-in replacement for the plain Transformer and
9 uses 16-25% less energy to reach same accuracy. It is open sourced for all to use:

= github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

Training an NLP model of the scale examined by Strubell et al. using the discovered Evolved
: Transformer on ML efficient hardware in a Google datacenter in lowa takes 120 TPUv2 hours, costs
9 $40, and generates 0.0024t of CO,e*, not 284t of CO,e*
: (2.4 kg, ~118,000X less)

https://arxiv.org/abs/2104.10350

Q Carbon Emissions and Large Neural Network Training, David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean,

——
‘ The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink, David Patterson, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean, IEEE Computer, https:/www.techrxiv.ora/ndownloader/files/34128165

Google

*CO,e = Carbon Dioxide Equivalents

https://arxiv.org/abs/2104.10350
https://www.techrxiv.org/ndownloader/files/34128165/2
http://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py

System goodput, power, reliability
and CO._e* should be primary
benchmarking and design targets

Many contributions to this section, including: Houle Gan, Sebastian Lobo, Xiaoyu Ma, Ram Padmanabhan,
Dave Patterson, Mukarram Tariqg, Parthasarathy Ranganathan

*CO,e = Carbon Dioxide Equivalents

The demand for ML compute is growing exponentially

of dense parameters

10000

Megatron-Turing

1000 NLG (530B)

GPT—3.(17SB) (540B)
100

T5 (11B) LaMBDA (2808B)

. (137B)
GPT-2 (1.5B)
Megatron-

y LM (8.38) ~1 OXIYI'

o BERT(340M) trajecto ry
ELMo
o1 | (93.6M)
2018 2019 2020 2021 2022

Year

Quality continues to improve with
number of dense parameters for
foundational models

. Required computing power growing super

" linearly with dense model size

Synchronous, parallel computation requires

. collectives—high speed, low latency

network interconnect

Google

Accelerated computing with

TPU Supercomputing

judicious specialization + application codesign

| A\
= B I o
: Synchronous, high Liquid cooling Specialized data Optical Circuit
§ bandwidth s for maximum D representation . 1 Switching for fault
1 0 —1 o O x § interconnect, s system efficiency D (e.g., int4 to bf16) . 1 tolerance and efficient
. parameter distribution : : scheduling
System efficiency |
(perf, power, cost) — : — L o
: nt s = o 4
Specialized hardware DRAM— High Specialized hardware ‘
: for dense matrix : © BandwidthMemory : : for scatter/gather : :
multiplication D stacked up . © insparse operations
.1 to10xbandwidth : :

Rapid innovation with Cloud TPU Al Supercomputers

Cloud TPU v2 Cloud TPU v4

Domain-specific Al supercomputing Optically reconfigurable 3D Torus
256 chips distributed shared memory 4k chips with distributed shared memory
2015 -9 2020 -9 2023
2018 2022
Google Cloud
TPU v1 Cloud TPU v3 Next 23
Internal Inference accelerator Liquid cooled

1k chips distributed shared memory

Google

Accelerated computing with
specialized hardware has
gotten us a massive factor

but this is no longer
enough...

Implications (or how to deliver the next
100x):

- Optimize for systems goodput, power,
reliability, and CO,e*

- Next generation of horizontal scaling

- Algorithmic innovation and software/hardware
codesign

Google

*CO,e = Carbon Dioxide Equivalents

The problem with current metrics

Traditionally, hardware evaluated in terms of “Chip Perf”/$ within a fixed power budget
Higher power ok as long as it meets reliability and heat dissipation requirements
and can be air cooled within a fixed space

‘ Chip perf is often simplistic view of headline numbers (e.g., max FLOPS, Specint), does not account for
systems cost

ML perf reports absolute performance at a given system size
It does not yet account for systems cost, CO.e*, or efficiency (and power is optional)

Defining systems Perf/TCO

Performance normalized to Total Cost of Ownership (TCO), or Perf/TCO, has been
the primary criteria for architectural evaluation

TCO = CapEx + OpEx

“Perf/[TCO”

Reflecting infrastructure
cost-performance is today’s

primary metric to evaluate CapEx (Capital Expenditure)= one-time investment to build compute HW and

new architectural designs physical infrastructure ' _ _ . .

to be deployed in 3-5 years OpEx (Operational Expenditure) = recurring cost paid during the life cycle of the
: servers:

OpEx = DC Provisioning Cost +

DC Provisioning Cost = #years x TDP x $/Provisioned Watt
= #years x consumed power x $/Consumed Watt

Google

Perf/TCO hidden assumptions

1. Thereis enough DC capacity to house new compute and it is ok not to idle
some provisioned power capacity

2. Consumed power can be accurately attributed back to individual workloads

3. Performance accurately captures the characteristics of both present and
future workloads and accounts for reliability

Perf/TCQO is no longer sufficient
Change in assumptions driving need to evolve metrics

o S
We cannot assume power We need metrics to match
capacity is infinite - community’s commitment to
5 : the carbon-free future
e Power bound : :
e Location bound Google has publicly committed to
° Environmental considerations operate 24/7 carbon-free energy by
: : 2030

LY . 1. Systems Perf/Average Watt
: A metric that represents systems performance capacity with
fixed power capacity
We need metrics to match

Google’s commitmenttothe Systems Perf/CO2e*

carbon-free future CO,e = DC construction COe +
5 Compute Infra build/delivery CO,e +

Google has publicly committed to Compute Infra Operational CO,e

operate 24/7 carbon-free energy by

2030 We must account for the cost of building, shipping, and

deploying our infrastructure.

Google

*CO,e = Carbon Dioxide Equivalents

Sample server CO._e

Server build CO,e: 1-4t/server according to public sources

CO,e offsets: $1000/ton according to public sources

1000W server with 50% average utilization of TDP:

500W — 4380kWh/year * 6 year lifetime = 26000kWh — 12.5 metric tons of CO, per IEA
using average 2019 power emissions [1]
475 g*CO,e/kWh

Google

[1] International Energy Agency, Global Energy and CO, Status Report, 2019. *CO,e = Carbon Dioxide Equivalents

Meeting the demand
requires innovation

Rethinking our system and
infrastructure designs

Fleet infrastructure and optimizing
deployment strategies — system TDP

Optimizing software/hardware to manage

dynamic power consumption range for
average power

Google

Optimizing software/hardware to manage dynamic power
consumption range for average power

Get more out of each Watt -@: Provision the right amount of Watts
Optimize the power parameters Load balance jobs to avoid worst-case,
for each job : concentrated power peaks
ML job Power demand CDF

e
1 | €

5 g1 13

2 : IR

% ' Best perf per 3 ol '5 Ay ;f

£ | TCO 2. g i 18

o ! 8 H S | '%

£ : ° < 8 g

= ®

Peak watts Peak watts per chip

Google

Before optimization

TDC ler) WL bound Core Vset Lpad
margin by freq line
Job1 800A 80mV compute 1x 0.87v 0.1m
Job2 600A 10mvV memory 1x 0.87v 0.1m
Job1
()
) 0.8y _J0b2
L 0.79V
(]
>
chipVmin = = = = = = = = = = = = = = = = = =
ChipspeCEDC = = = e e e e e e o o o o o o o o =
- 1200A = = = = = = = — —
S 1000A - — e e
= 800A
3 600A
(@]

Google

Before optimization

After optimization

TDC ler) WL bound Core Vset Lpad TDC ler] WL bound Core Vset Load line
margin by freq line margin by freq
Job1 800A 80mv compute 1x 0.87v 0.1m 840A 25mV balanced 1.1x 0.84V 0.1m
Job2 600A 10mvV memory 1x 0.87v 0.1m 500A 25mV balanced 0.9x 0.87V 0.25m
Job1
o Job2 Lower Vset or
g 8'%\\// g’ deeper loadline
) .
) S 8';22:// RNAAATIATA
> o o — = = NINONANAN L jobtvimin
chipVmin = = = = = = = = = = = — - — — - . P e e e m e e == job2 Vmin
ChipSpeCEDC — — — — — — e e e e e e e = = Worklpa,d_a,ware - T mmmmmmmmmmTT
= 1200A = = = = = = = = = optimization S g10A ANNAN
S 1000A — — o e o
= 800A 5 ANAANANANS
=] 600A o SNA N
(&) di/dt mitigation

on job2

1.1x Performance
0.8x Power

Google

Optimizing software/hardware to manage dynamic power

Power aware scheduling
Use power demand & supply in job scheduling

Power constrained bus duct

Adverse
scheduling
‘;) ~N
i 3
High power job

Low power job

Rack

consumption range for average power

and cell control plane

Load balanced

scheduling
v .
Given job placements, Cell control
optimize each job’s power plane
params
I Power traces by job
Power capacity by bus duct
R Machine &
a 2 Given the power profile of S
jobs, (re)optimize their power domain
lacement
« Fits power constraints P
® Violates power constraints — Data

—> Decisions

The control plane combines both capabilities to maximize cell throughput per unit of power,

while respecting job SLOs and reacting to power domain failure events

Job power parameter fine tuning
Add live feedback loops between power domain

Optimized power
parameters per job
(e.g. voltage, frequency,
power cap, etc)

End to end power/perf management

Schedule:
e 4x1-rack training jobs
e Ix16-rack training job

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Mini datacenter:
e 4 busducts
e 20 racks (5 racks per bus duct)

5 racks

Bus 1
Bus 2
Bus 3
Bus 4

Google

End to end power/perf management

Schedule:

e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:
e 4 busducts
e 20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Bus 1
Bus 2
Bus 3
Bus 4

Initial placement load balances

power demand across all bus ducts

Google

End to end power/perf management

Schedule:

e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:

4 bus ducts
20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Bus 1
Bus 2
Bus 3

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:
e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:

4 bus ducts
20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

40% throttling

Bus4®

Bus 1
Bus 2
Bus 3

Action 1: Throttle all jobs in bus
duct 4 by 40%

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:
e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:
e 4 busducts
e 20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Throttling affects throughput of
entire large job, severely
impacting cell-wide throughput

Bus 1

Bus 2

Bus 3

40% throttling

Bus4®

Action 1: Throttle all jobs in bus
duct 4 by 40%

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:
e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:
e 4 busducts
e 20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

4+
(0]
£
b =]
(o)
1 9
<
=)
R
o)
N
; (q\] o <
wn 2] [%2]
3 > S
m m oM 8

Action 2: Evict the small job in bus
4 & give more power budget to the
Large job

Effect: Throttling is reduced from
40% to 28%

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:
e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:

4 bus ducts
20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

Bus 1

Bus 2

5% throttling

Bus 3

Bus 4 @4% throttling

Action 3: Shift workers from the
large job to bus 3 (evicting a small
job along the way). Throttle Bus 3
to avoid violating power constraint

Effect: Throttling is reduced from
28% to 5%. This is the minimum
possible throttling for the cell.

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:

e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:

4 bus ducts
20 racks (5 racks per bus duct)

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

5% throttling
; N o™ <t
(2] (2] [%2)
2 @ @ @

Action 4: Throttle the entire large
job by 5% to even out performance

Power failure event: Bus duct 4
has 40% less power available

Google

End to end power/perf management

Schedule:

e 4x1-rack training jobs
e Ix16-rack training job

Mini datacenter:

Rack

Small, 1 rack synchronous training job
(Up to 16% peak bus duct power per rack)

Large, 16 rack synchronous training job
(Up to 21% peak bus duct power per rack)

4 bus ducts

20 racks (5 racks per bus duct)
AR o=

1.3x boost <
T Y

3% throttling
; N o™ <t
(2] (2] [%2)
-}
& 38 & @&

Action 5: Use the incremental

power budget to boost the
remaining jobs

Effect: Maximized throughput for
the cell

Power failure event: Bus duct 4
has 40% less power available

Google

Given the scale of ML systems and
the size of ML training jobs any
reliability issues become massively
impactful, often times infecting the
entire system

Silent data corruption

Non-deterministically produce incorrect
results, silently

Challenging problem when running largely
independent computation

Multiplicatively worse at scale with
synchronous stochastic gradient descent

Can quickly spread results across thousands
of components across ML supercomputer

Cores that don’t count

Peter H. Hochschild Rama Govindaraju David E. Culler
Paul Turner Parthasarathy Amin Vahdat
Jeffrey C. Mogul Ranganathan Google
Google Google Sunnyvale, CA, US
Sunnyvale, CA, US Sunnyvale, CA, US
Abstract M, USA. ACM, New York, NYY, USA, 8 pages. https://doi.org/10.

We are accustomed to thinking of computers as fail-stop, es-
pecially the cores that execute instructions, and most system
software implicitly relies on that assumption. During most of
the VLSI era, processors that passed manufacturing tests and
were operated within specifications have insulated us from
this fiction. As fabrication pushes towards smaller feature
sizes and more elaborate computational structures, and as
i i jalized i ion-silicon pairings are intro-
duced to improve performance, we have observed ephemeral
computational errors that were not detected during manu-
facturing tests. These defects cannot always be mitigated by
techniques such as microcode updates, and may be correlated
to specific components within the processor, allowing small
code changes to effect large shifts in reliability. Worse, these
failures are often “silent” — the only symptom is an erroneous
computation.

‘We refer to a core that develops such behavior as “mercu-
rial” Mercurial cores are extremely rare, but in a large fleet
of servers we can observe the disruption they cause, often
enough to see them as a distinct problem — one that will re-
quire collaboration between hardware designers, processor
vendors, and systems software architects.

This paper is a call-to-action for a new focus in systems re-
search; we speculate about several software-based approaches
to mercurial cores, ranging from better detection and isolat-
ing mechanisms, to methods for tolerating the silent data
corruption they cause.

ACM Reference Format:

Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govin-
daraju, Parthasarathy Ranganathan, David E. Culler, and Amin Vah-
dat. 2021. Cores that don’t count. In Workshop on Hot Topics in
Operating Systems (HotOS "21), May 31-June 2, 2021, Ann Arbor,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted withou fee provided that copies are not
‘made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

HotOS *21, May 31-June 2, 2021, Ann Arbor, MI, USA

©2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.
htipsz//doi.org/10.1145/3458336.3465297

1145/3458336.3465297

1 Introduction

Imagine you are running a massive-scale data-analysis pipeline

in production, and one day it starts to give you wrong answers
— somewhere in the pipeline, a class of computations are yield-
ing corrupt results. Investigation fingers a surprising cause: an
innocuous change to a low-level library. The change itself was
correct, but it caused servers to make heavier use of otherwise
rarely-used instructions. Moreover, only a small subset of the
server machines are repeatedly responsible for the errors.

This happened to us at Google. Deeper investigation re-
vealed that these instructions malfunctioned due to manu-
facturing defects, in a way that could only be detected by
checking the results of these instructions against the expected
results; these are “silent" corrupt execution errors, or CEEs.
Wider investigation found multiple different kinds of CEEs;
that the detected incidence is much higher than software engi-
neers expect; that they are not just incremental increases in
the background rate of hardware errors; that these can mani-
fest long after initial installation; and that they typically afflict
specific cores on multi-core CPUs, rather than the entire chip.
We refer to these cores as “mercurial.”

Because CEEs may be correlated with specific execution
units within a core, they expose us to large risks appearing
suddenly and unpredictably for several reasons, including
seemingly-minor software changes. Hyperscalers have a re-
sponsibility to customers to protect them against such risks.
For business reasons, we are unable to reveal exact CEE rates,
but we observe on the order of a few mercurial cores per
several thousand machines — similar to the rate reported by
Facebook [8]. The problem is serious enough for us to have
applied many engineer-decades o it.

While we have long known that storage devices and net-
works can corrupt data at rest or in transit, we are accustomed
to thinking of processors as fail-stop. VLSI has always de-
pended on sophisticated manufacturing testing to detect defec-
tive chips. When defects escaped, or manifested with aging,
they were assumed to become fail-stop or at least fail-noisy:
triggering machine-checks or giving wrong answers for many
kinds of instructions. When truly silent failures occurred, they

Metrics anomaly: anomaly due to SDC

Anomaly due to SDC

N

£
S
(®)
Z
)
c
2
©
©
1
O

Metrics anomaly: expected anomaly (no SDC)

Anomaly with NO SDC

£
o
o
Z
wjd
(=
2
O
@©
e
O

SDC with no metrics anomaly

£
1
(®)
Z
)
c
2
©
@©
1
O

SDC detected with NO anomaly
The step replay shows different values,
but both values are in the normal range.

ML Controller transparently handles
Silent Data Corruption (SDC)

- Synchronous training worker - SDC checker Hot spare

HEE EEE EEE EEs
HEE EBEE EElE B

1 1 - - -:|
SDC Checker

. Defective machine SDC checker
Normal training causes SDC automatically moves training to
state identifies SDC hot spare and

sends defective
machine for repair

Google

Iterate much faster when
delivering specialized hardware

We have to iterate much faster...

Current idealized timeline for chip delivery to production

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg
partner
... '

Right now, industry best practices
from idea to production:

Google

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Google

What if designing a custom chip
took a few people a few weeks?

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Use machine learning to
automatically do architectural
exploration and synthesis

Google

Using ML to extend the design space exploration

Simultaneously optimize

0 Hardware design space choices (~10® search space)

How workloads are mapped onto this hypothetical hardware (by compilers or other software):
search space now much larger (~10%3°)

Parameter Name Type | Potential Values
e W o el i PEs_x_dim int 1to 256, powers of 2
g PEs_y_dim int 1 to 256, powers of 2
1 1 : d Systolic Array Systolic_array_x int 1to 256, powers of 2
- Systolic_array_y int 1 to 256, powers of 2
PE [PE |=""" s PE — -
Vector_unit_multiplier int 1to 16, powers of 2
1 b \ L1_buffer_config enum | Private, Shared
o o [L1_input_buffer_size int 1KB to 1MB, powers of 2
1 1 1 g L1_weight_buffer_size int 1KB to 1MB, powers of 2
PE W=| PE fe=-e- e PE L1_output_buffer_size int 1KB to 1MB, powers of 2
R L2_buffer_config enum | Disabled, Private, Shared
L2_input_buffer_multiplier | int 1x to 128x, powers of 2
Global Memory L2_weight_buffer_multiplier | int 1x to 128x, powers of 2
L2_output_buffer_multiplier | int 1x to 128x, powers of 2
L3_global_buffer_size int OMB to 256MB, powers of 2
Off-chip DRAM GDDR6_channels int 1to 8, powers of 2
Native_batch_size int 1to 256, powers of 2
A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators, Google

Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842

Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process
Red: compiler space exploration only with no HW changes vs. baseline
Green: customizing accelerator+compiler for a particular single model

B TPU-v3 Baseline M TPU-v3 + FAST scheduling/fusion M FAST search - single workload

7

6
»
>
5 5
g
s 4
>
é 3
% 2
o

0

EfficientNet-BO B1 B2 B3 B4 ResNet50 OCR-RPN OCR-Rec BERT-128 BERT-1024 GeoMean GeoMean-5
A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators, GOOg|€

Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842

Using ML to extend the design space exploration

Blue: baseline TPUv3-like system but simulated on more modern process

Red: compiler space exploration only with no HW changes vs. baseline

Green: customizing accelerator+compiler for a particular single model
customizing accelerator+compiler to mix of five model workload

B TPU-v3 Baseline M TPU-v3 + FAST scheduling/fusion W FAST search - single workload FAST search - multi workload

7
6
»
>
35 5
&
g- 4
é 3
T 2
o
0
EfficientNet-BO B1 B2 B3 B4 ResNet50 OCR-RPN OCR-Rec BERT-128 BERT-1024 GeoMean GeoMean-5
Customize for these five
A Full-stack Search Technique for Domain Optimized Deep Learning Accelerators, Google

Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. ASPLOS, 2022, arxiv.org/abs/2105.12842

https://arxiv.org/abs/2105.12842

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Speed up verification by learning to
automatically generate test coverage
with small set of tests

Google

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months

Design and Implement the Tape out

exploration new design with mfg
partner

Speed up verification by learning to
automatically generate test coverage
with small set of tests

12 months
Chip to production

Promising results not discussed in
this talk. See paper below!

Learning Semantic Representations to Verify Hardware Designs, Shobha Vasudevan, Wenjie Jiang, David Bieber, Rishabh Singh, Hamid Google

Shojaei, C. Richard Ho, Charles Sutton. NeurIPS 2021, openreview.net/pdf?id=olhzg4GJeOf

https://openreview.net/pdf?id=oIhzg4GJeOf
https://openreview.net/pdf?id=oIhzg4GJeOf

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Learn to quickly generate high quality
placement and routing solutions

Google

Can we get an RL Agent to successfully play the
“Game of ASIC Chip Layout™?

Number of states Number of states Number of states

~10123 ~10360 ~109000

Results on a TPU design block

White blurred area are macros (memory); green blurred area are standard cell clusters (logic)
ML placer finds smoother, rounder macro placements to reduce the wirelength

Human Expert ML Placer

-2.9% shorter

Time taken: ~6-8 person weeks Time taken: 24 hours
Total wirelength: 57.07m .~ Total wirelength: 55.42m

Google

Results on recent full chip TPU design

RL tool used for placement and routing of
37 blocks of recent TPU chip design

Compared to placements by human experts:

. 26 of 37 blocks better quality of result
. 7 of 37 blocks equal quality of result

‘ 4 of 37 blocks worse quality of result

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Note that even if we just get much more rapid turnaround with less human effort
required for the whole design and implementation phase of a chip, we can then run it
on system emulators, get much higher quality feedback, etc., even if we don’t send
every automated design+implementation to a fab

Google

Opportunity: Apply ML to chip design

6-12 months 12 months 6 months 12 months
Design and Implement the Tape out Chip to production
exploration new design with mfg

partner

Software running on emulation at tapeout

Assuming silicon is correct, converge quickly to target DPPM

Running workloads across thousands of chips in one month

Vendor IP with debugging and visibility support, SDC isolated with OOB test

Google

- ML capabilities (image creation, audio, coding
assistance, etc) improving rapidly and will bring
fundamental changes to the way we do things

=> MLis anincreasingly large portion of global
computation

- ML models increasingly dynamic and evolving

CO n C I U S | O n S structures, not static, dense models

-> Focus on systems goodput not chip headline
performance

> Power, CO,e efficiency, SDC important to accurately
' measure and improve

- Shorter timelines for designing and deploying new
hardware essential to rapidly adapt to changing ML
landscape (ML automation of design process can help!)

Thank you!

oooooo

