
Introduction to Inference
Micah Villmow, Principal TensorRT Engineer

Hotchips Tutorial on ML-Inference 8/27/2023

• Inference Introduction

• Ecosystem

• Optimization

• Execution

Agenda

Inference Introduction

What Is Inference?
“Inference is a conclusion reached on the basis of

evidence and reasoning1”
— Oxford Dictionary

Conclusion:

The output of the network

Evidence:

Prior knowledge is the trained weights

Current knowledge is the input activations

Reasoning:

The reasoning is implicit in the network

1. https://www.oed.com/search/dictionary/?scope=Entries&q=inference

Difference From Training

• No backward passes.

• Weights are read-only.

• Activations do not need to be stored.

• Dataset is unknown.

• The data can be, but is not required to be, normalized.

• Optimize for different metrics vs throughput for training.

AI Inference Drives The Modern Applications
Demand for fast, easy inference deployment greater than ever

Conversational AIComputer Vision Recommender System Fraud Detection

Ecosystem

Hardware Ecosystem

Embedded Automotive Data Center Edge Gaming Professional

VPU DPU TPU GPU SOC WaferScaleCPU

Application Layer

Inference Software Ecosystem
A simplified model

Hardware Layer

Platform Layer

System Layer (CUDA, NCCL, OpenMPI)

Graph Compiler Layer (XLA, FX, TensorRT)

Framework Layer (PyTorch, TF, JAX)

Extended Framework Layer (Hugging Face, PyTorch Lightning)

RNNsCNNs Transformers Sparse LSTMs

Capsule NetsGANs Large Language Models Reinforcement Learning

Cambrian Model Explosion

Optimizations

Why Optimize? Reduce

Cost

Latency

Model Size

Memory Usage

Bandwidth

Power Usage

Precision
What is the best format?

FP Format Exponent* Significand+

IEEE-754 64bit 11 52

IEEE-754 32bit 8 23

TensorFloat-32 19bit 8 10

IEEE-754 16bit 5 10

BFloat 16bit 8 7

FP8E4M3 4 3

FP8E5M2 5 2

Integer Formats

Int64 Int32

Int16 Int8

Int4 Int2

Uint64 Uint32

Uint16 Uint8

Uint4 Uint2

Uint1

* Exponent determines the range
+ Significand size determines precision

Layouts
What is the best representation?

Scalar Format

2-wide Vector Format

4-wide Vector Format

8-wide Vector Format

Memory — Formats
Combination of Precision and Layout

4xMat4 Int4

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 14

14 1414 1418 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18

18 1818 18F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

F16 F16F16 F16

2xMat4 Int8Mat4 Int8Mat4 FP162xVec4 FP16

18 1818 18F16 F16F16 F1618 1818 18F16 F16F16 F16

Vec4 Int8Vec2 FP16Linear Int8Linear FP16

Type and Shape inference

• What are the input and output types of the purple layer?

• What are the output dimensions of the Softmax?

Linear FP32 -> ???? Conv
(4, 32, 128, 128)

???? -> Vec2 FP16 Softmax
(?, ?, ?, ?)

??? Activation
(?, ?, ?, ?)

Dynamic — Dimensions

• How many video formats are there?

• Image sizes?

• Sentence lengths?

• Dictionary sizes?

• Object counts?

Variable sized inputs for a network

5:4 4:3 3:2 16:10 16:9

SXGA
1280x1024

QVGA
320x240

NTSC
720x480

CGA
320x200

WVGA
854x480

QSXGA
2560x2048

VGA
640x280

1152x768 WSXGA+
1680x1050

HD 720
1280x720

PAL
768x576

1280x854 WUXGA
1920x1200

HD 1080
1920x1080

SVGA
800x600

1440x960 WQXGA
2560x1600

XGA
1024x768

1280x960

SXGA+
1400x1050

UXGA
1600x1200

QXGA
2048x1536

Dynamic
Data Dependent Shapes

• How many objects are in each image?

Quantization

• Decreases latency and storage

• Balances between truncation and discretization

Do almost the same with less

Activations — Sparsity

• Generated as part of training or via post training optimization

• Sparsity in inference can improve performance and
reduce size of weights

• Structured — The number of weights that are zero is same
every N values

• N:M — N zeros every M elements

• Block — Various blocks are sparse

• Unstructured - Percentage of memory that is 0

• 10% — 1 out of 10 elements over entire memory block is a zero

Types of sparsity

Quantization Methods

Post Training Qauntization Quantization Aware Training

Inference before PTQ

FP32 FP32 FP32 FP32
Conv Conv Conv

Weights
FP32

FP32

Inference after PTQ

FP32 Int8 Int8 FP32
Conv Conv Conv

Weights
FP32

FP32

Calibration
Dataset

Fake Quantization (QDQ) in training framework

Fake Quantization (QDQ) in ONNX

Q

Q

DQ

DQ

Conv Q DQ

Weights
FP32

Fake
Quant

Fake
Quant

Conv
Fake

Quant

Weights
FP32

FP32

Int8

ExportCalibration

Weight Optimizations

• Conversion to different data types lowers memory
requirements

• Conversion to different formats allows efficient algorithms

Transforming weights to different types

FP32 -> FP16
Conversion

FP32 -> Int8
Conversion

FP32 to FP16
w/Padding

Layer Fusion

• Combines nodes into a single node, making single kernel
execution.

• Significantly reduces number of layers to compute, resulting in
faster performance.

• Eliminates unnecessary memory traffic by not spilling to
memory.

Optimizes use of GPU memory and bandwidth by fusing
nodes in a kernel

developer.nvidia.com/tensorrt

Input

MatMul
(Q)

MatMul
(K)

MatMul
(V)

Transpose

Transpose

Transpose

MUL
Eltwise
Scale

Softmax

MUL

Input
MatMul
(QKV)

Transpose
MUL

Scaled
Softmax

MUL

https://developer.nvidia.com/tensorrt

Time Fusion

• Recurrent neural network optimizations

• Deploy highly optimized ASR and TTS

• Compiler fuses pointwise ops, fuses GEMMs and
compute efficiently across time steps

Optimizes recurrent neural networks over time steps with
dynamically generated kernels

developer.nvidia.com/tensorrt

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

h0

x0

h2

x2

ht

xt

Time Fusion

Pointwise fusion
Fused GEMMs

https://developer.nvidia.com/tensorrt

Memory — Tiling

• Segment a graph to get better computation locality

• Fits more of the graph computation into L1/L2

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Slice

starts (4)
ends (4)

Slice

starts (4)
ends (4)

Slice

starts (4)
ends (4)

Slice

starts (4)
ends (4)

X

Concat Concat

Concat

Y

X

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Conv

W (64x64x3x3)

Y

Memory Scheduling

• Reduces memory footprint and improves memory
re-use

• Two tensors with disjoint lifetimes can share the same
memory

• Becomes an instance of the “dynamic storage allocation
problem”

• Similar to traditional register allocation

Minimizes memory footprint and reuses memory
for tensors efficiently

B

C

D

E

A

F

G

Output

Tensor A Tensor B Tensor C Block 0

Tensor D

Region 1

Region 2

Tensor E

Region 3

Block 1

developer.nvidia.com/tensorrt

https://developer.nvidia.com/tensorrt

Memory Scheduling

• Reduces memory footprint and improves memory re-
use

• Two tensors with disjoint lifetimes can share the same
memory

• Becomes an instance of the “dynamic storage allocation
problem”

• Similar to traditional register allocation

Minimizes memory footprint and reuses memory
for tensors efficiently

B

C

D

E

A

F

G

Output

Tensor F Tensor G Block 0

Tensor D

Region 1

Region 2

Block 1

developer.nvidia.com/tensorrt

https://developer.nvidia.com/tensorrt

Kernel Selection

• Specialized kernels optimized for every operation

• Combination of static and dynamically generated kernels

• Kernel selection uses timing information to choose combination of
formats, precisions, and implementations that minimizes a network
property

• Strives for best performance for specific deployment platform and
specific neural network

Selects best data layers and algorithms based on
the target platform

Multi-Device Segmentation
How to run large language models?

Single Device Model Multi Device Model

Input2 Input1

Eltwise

Output

Network Topology Distributed Network Topology

Slice1Dev0 Slice1Dev1 Slice0Dev0 Slice0Dev1

Input1 Input0

Eltwise0 Eltwise1

Concat

Output

Instance0 Instance0

Instance0

Instance1

Instance0

Instance0

Instance0

Instance1

Instance0 Instance0

Instance0

Execution

Server

Offline Single Stream

Multi Stream

Execution Modes

Inference
Engine

(TensorRT)

Single
sample

per query

Wait for inference
to complete, report

p90% latency

Inference
Engine

(TensorRT)

Each query
contains N=8

samples

Wait for inference
to complete, report

p99% latency

Inference
Engine

(TensorRT)

Single query at start of test includes all
samples

Report
thoughput

Static
Batching

Inference
Engine

(TensorRT)

Single-sample queries arrive randomly,
with Poisson distribution

Report throughput that meets
latency budget

Latency
Constrained

Batching

Latency
budget

Multi-Stream Concurrent Execution

• Better performance and improved utilization through multi-
stream concurrent execution

Uses a scalable design to process multiple input
streams in parallel

A30

RN50 Instance 1CUDA Stream

RN50 Instance 2CUDA Stream

RN50 Instance 3CUDA Stream

RN50 Instance 4CUDA Stream

RN50 Instance 5CUDA Stream

RN50 Instance 6CUDA Stream

RN50 Instance 7CUDA Stream

RN50 Instance 8CUDA Stream

ResNet50
Request Queue

Inference
Request

10 Concurrent
requests

Activations — Async Buffering

• Relies on multiple buffers to pipeline execution

• Requires notification of when a buffer is ready

• Allows pipelining of execution and copying inputs for next
iteration

Execute
N

Execute
N + 1

Copy

Copy

Execute
N + 2

Execute
N + 3

Copy

Copy

Buffer
N

Execute
Head

Execute
Body

Enqueue

Buffer
N

Execute
Head + 1

Execute
Body

Enqueue

Buffer
N

Execute
Head + 2

Execute
Body

Enqueue

Buffer
N

Execute
Head + 3

Execute
Body

Enqueue

Signal Input Done

Signal Input Done

Signal Input Done

T
im

e

Delivering High Performance Across Frameworks
NVIDIA Triton’s architecture

Standard
HTTP/gRPC

Or

In-Process API
(directly integrate into client

app via C or Java API)

Utilization, Throughput, Latency Metrics

Flexible Model
Loading

(All, Selective)

Per Model
Scheduler Queues

Dynamic Batching
(Real time, Batch, Stream)

Multiple GPU & CPU
Backends

…

Model Analyzer Model Orchestration

GPU CPU

Custom

Python/C++
Client Library

Query

Result

Python/C++
Client Library

Query

Result

Python/C++
Client Library

Query

Result

Multiple Client
Applications

Many active
models

Model
Repository

Kubernetes,
Prometheus

Metrics

AI Inference Workflow
Collaboration between multiple teams

Query

Result

ML Engineer

Data Scientist ML

Engineer

ML Engineer,

DevOps, SRE

App Developer,

DevOps, SRE

Business Owner

(LOB)

Model
Optimization

Trained
Models

AI
Application

Model
Repo

Infrastructure

Inference
Serving

IT, Platform

Choice of ML
framework and model
for different use cases

Optimize For Multiple
Constraints For High

Perf. Inference

Scaled Inferences with
High Perf. & Utilization

On GPU/CPU

Fast rollouts and
business SLAs

Improved business metrics e.g., 90%
fraud accurately detected real time,
30% customer issues resolved with

chatbot

Support AI workflows cost efficiently
with SLAs on CPU, GPU, public cloud,

on-prem, virtualized platforms

